Nuprl Lemma : list_induction

[T:Type]. ∀[P:(T List) ⟶ ℙ].  (P[[]]  (∀aaaa:T. ∀LLLL:T List.  (P[LLLL]  P[[aaaa LLLL]]))  (∀L:T List. P[L]))


Proof




Definitions occuring in Statement :  cons: [a b] nil: [] list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T so_lambda: so_lambda(x,y,z.t[x; y; z]) subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: so_apply: x[s] so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind-general-wf all_wf list_wf cons_wf nil_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation rename introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality functionEquality because_Cache cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:(T  List)  {}\mrightarrow{}  \mBbbP{}].
    (P[[]]  {}\mRightarrow{}  (\mforall{}aaaa:T.  \mforall{}LLLL:T  List.    (P[LLLL]  {}\mRightarrow{}  P[[aaaa  /  LLLL]]))  {}\mRightarrow{}  (\mforall{}L:T  List.  P[L]))



Date html generated: 2016_05_14-AM-06_27_12
Last ObjectModification: 2015_12_26-PM-00_41_29

Theory : list_0


Home Index