Nuprl Lemma : cons_wf

[S:Type]. ∀[a:S]. ∀[b:S List].  ([a b] ∈ List)


Proof




Definitions occuring in Statement :  cons: [a b] list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cons: [a b] subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  list-ext subtype_rel_b-union-right unit_wf2 list_wf ext-eq_inversion b-union_wf subtype_rel_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_pairEquality hypothesis applyEquality productEquality hypothesisEquality independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[S:Type].  \mforall{}[a:S].  \mforall{}[b:S  List].    ([a  /  b]  \mmember{}  S  List)



Date html generated: 2016_05_14-AM-06_25_50
Last ObjectModification: 2015_12_26-PM-00_42_23

Theory : list_0


Home Index