Nuprl Lemma : cons_wf
∀[S:Type]. ∀[a:S]. ∀[b:S List].  ([a / b] ∈ S List)
Proof
Definitions occuring in Statement : 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cons: [a / b]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
list-ext, 
subtype_rel_b-union-right, 
unit_wf2, 
list_wf, 
ext-eq_inversion, 
b-union_wf, 
subtype_rel_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
independent_pairEquality, 
hypothesis, 
applyEquality, 
productEquality, 
hypothesisEquality, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[S:Type].  \mforall{}[a:S].  \mforall{}[b:S  List].    ([a  /  b]  \mmember{}  S  List)
Date html generated:
2016_05_14-AM-06_25_50
Last ObjectModification:
2015_12_26-PM-00_42_23
Theory : list_0
Home
Index