Nuprl Lemma : int_formula_dnf_wf
∀[fmla:int_formula()]. (int_formula_dnf(fmla) ∈ polynomial-constraints() List)
Proof
Definitions occuring in Statement : 
int_formula_dnf: int_formula_dnf(fmla)
, 
polynomial-constraints: polynomial-constraints()
, 
int_formula: int_formula()
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_formula_dnf: int_formula_dnf(fmla)
, 
so_lambda: λ2x y.t[x; y]
, 
subtype_rel: A ⊆r B
, 
polynomial-constraints: polynomial-constraints()
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
so_apply: x[s1;s2]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
Lemmas referenced : 
int_formula_ind_wf_simple, 
list_wf, 
polynomial-constraints_wf, 
cons_wf, 
nil_wf, 
iPolynomial_wf, 
int_term_to_ipoly_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermConstant_wf, 
subtype_rel_product, 
subtype_rel_list, 
subtype_rel_self, 
int_term_wf, 
and-poly-constraints_wf, 
int_formula_wf, 
append_wf, 
negate-poly-constraints_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
because_Cache, 
independent_pairEquality, 
voidEquality, 
natural_numberEquality, 
applyEquality, 
independent_isectElimination, 
voidElimination, 
lambdaFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[fmla:int\_formula()].  (int\_formula\_dnf(fmla)  \mmember{}  polynomial-constraints()  List)
Date html generated:
2016_05_14-AM-07_09_35
Last ObjectModification:
2015_12_26-PM-01_07_39
Theory : omega
Home
Index