Nuprl Lemma : int_formula_wf

int_formula() ∈ Type


Proof




Definitions occuring in Statement :  int_formula: int_formula() member: t ∈ T universe: Type
Definitions unfolded in proof :  int_formula: int_formula() member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  int_formulaco_wf has-value_wf-partial nat_wf set-value-type le_wf int-value-type int_formulaco_size_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep setEquality cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin independent_isectElimination intEquality lambdaEquality natural_numberEquality hypothesisEquality

Latex:
int\_formula()  \mmember{}  Type



Date html generated: 2016_05_14-AM-07_04_20
Last ObjectModification: 2015_12_26-PM-01_10_43

Theory : omega


Home Index