Nuprl Lemma : int_formulaco_wf

int_formulaco() ∈ Type


Proof




Definitions occuring in Statement :  int_formulaco: int_formulaco() member: t ∈ T universe: Type
Definitions unfolded in proof :  int_formulaco: int_formulaco() member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False so_apply: x[s]
Lemmas referenced :  corec_wf eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom int_term_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality productEquality atomEquality hypothesisEquality tokenEquality hypothesis lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination because_Cache equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination voidEquality universeEquality

Latex:
int\_formulaco()  \mmember{}  Type



Date html generated: 2017_04_14-AM-08_59_42
Last ObjectModification: 2017_02_27-PM-03_41_51

Theory : omega


Home Index