Nuprl Lemma : corec_wf

[F:Type ⟶ Type]. (corec(T.F[T]) ∈ Type)


Proof




Definitions occuring in Statement :  corec: corec(T.F[T]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T corec: corec(T.F[T]) so_apply: x[s] nat:
Lemmas referenced :  nat_wf primrec_wf top_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule isectEquality lemma_by_obid hypothesis thin instantiate sqequalHypSubstitution isectElimination universeEquality hypothesisEquality lambdaEquality applyEquality natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  (corec(T.F[T])  \mmember{}  Type)



Date html generated: 2016_05_14-AM-06_11_54
Last ObjectModification: 2015_12_26-PM-00_06_21

Theory : co-recursion


Home Index