Nuprl Lemma : corec_wf
∀[F:Type ⟶ Type]. (corec(T.F[T]) ∈ Type)
Proof
Definitions occuring in Statement : 
corec: corec(T.F[T])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
corec: corec(T.F[T])
, 
so_apply: x[s]
, 
nat: ℕ
Lemmas referenced : 
nat_wf, 
primrec_wf, 
top_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
isectEquality, 
lemma_by_obid, 
hypothesis, 
thin, 
instantiate, 
sqequalHypSubstitution, 
isectElimination, 
universeEquality, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  (corec(T.F[T])  \mmember{}  Type)
Date html generated:
2016_05_14-AM-06_11_54
Last ObjectModification:
2015_12_26-PM-00_06_21
Theory : co-recursion
Home
Index