Nuprl Lemma : primrec_wf

[T:Type]. ∀[n:ℕ]. ∀[b:T]. ∀[c:ℕn ⟶ T ⟶ T].  (primrec(n;b;c) ∈ T)


Proof




Definitions occuring in Statement :  primrec: primrec(n;b;c) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False and: P ∧ Q ge: i ≥  le: A ≤ B cand: c∧ B less_than: a < b squash: T guard: {T} uimplies: supposing a prop: top: Top all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b iff: ⇐⇒ Q not: ¬A rev_implies:  Q subtract: m less_than': less_than'(a;b) true: True int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than primrec-unroll istype-void lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf less_than_wf iff_weakening_uiff assert_of_bnot istype-assert not-lt-2 int_seg_wf subtract-1-ge-0 subtract_wf decidable__le istype-false not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__lt add-mul-special zero-mul le-add-cancel-alt istype-le subtype_rel_dep_function subtype_rel_sets_simple and_wf le_wf le-add-cancel2 subtype_rel_self istype-nat istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination Error :lambdaFormation_alt,  independent_pairFormation productElimination imageElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination Error :universeIsType,  Error :lambdaEquality_alt,  dependent_functionElimination Error :isect_memberEquality_alt,  axiomEquality equalityTransitivity equalitySymmetry Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  unionElimination equalityElimination because_Cache Error :dependent_pairFormation_alt,  Error :equalityIstype,  promote_hyp instantiate cumulativity Error :functionIsType,  applyEquality Error :dependent_set_memberEquality_alt,  addEquality minusEquality Error :productIsType,  functionEquality intEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[b:T].  \mforall{}[c:\mBbbN{}n  {}\mrightarrow{}  T  {}\mrightarrow{}  T].    (primrec(n;b;c)  \mmember{}  T)



Date html generated: 2019_06_20-AM-11_27_41
Last ObjectModification: 2019_01_28-PM-05_28_01

Theory : call!by!value_2


Home Index