Nuprl Lemma : condition-implies-le
∀[a,b,c,d:ℤ].  (a ≤ b) supposing ((c ≤ d) and ((b - a) = (d - c) ∈ ℤ))
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
subtract: n - m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
rev_uimplies: rev_uimplies(P;Q)
, 
le: A ≤ B
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
Lemmas referenced : 
le-iff-nonneg, 
le_transitivity, 
subtract_wf, 
le_weakening, 
less_than'_wf, 
le_wf, 
equal_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
equalitySymmetry, 
natural_numberEquality, 
dependent_functionElimination, 
because_Cache, 
intEquality, 
isect_memberFormation, 
introduction, 
sqequalRule, 
independent_pairEquality, 
lambdaEquality, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
voidElimination
Latex:
\mforall{}[a,b,c,d:\mBbbZ{}].    (a  \mleq{}  b)  supposing  ((c  \mleq{}  d)  and  ((b  -  a)  =  (d  -  c)))
Date html generated:
2016_05_13-PM-03_31_28
Last ObjectModification:
2015_12_26-AM-09_45_56
Theory : arithmetic
Home
Index