Nuprl Lemma : le_weakening
∀a,b:ℤ.  a ≤ b supposing a = b ∈ ℤ
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
Lemmas referenced : 
le-iff-less-or-equal, 
less_than'_wf, 
equal_wf, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
independent_pairEquality, 
lambdaEquality, 
voidElimination, 
isectElimination, 
axiomEquality, 
intEquality, 
inrFormation
Latex:
\mforall{}a,b:\mBbbZ{}.    a  \mleq{}  b  supposing  a  =  b
Date html generated:
2016_05_13-PM-03_30_38
Last ObjectModification:
2015_12_26-AM-09_46_57
Theory : arithmetic
Home
Index