Nuprl Lemma : le_weakening

a,b:ℤ.  a ≤ supposing b ∈ ℤ


Proof




Definitions occuring in Statement :  uimplies: supposing a le: A ≤ B all: x:A. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) le: A ≤ B not: ¬A implies:  Q false: False uall: [x:A]. B[x] prop: guard: {T} or: P ∨ Q
Lemmas referenced :  le-iff-less-or-equal less_than'_wf equal_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination sqequalRule independent_pairEquality lambdaEquality voidElimination isectElimination axiomEquality intEquality inrFormation

Latex:
\mforall{}a,b:\mBbbZ{}.    a  \mleq{}  b  supposing  a  =  b



Date html generated: 2016_05_13-PM-03_30_38
Last ObjectModification: 2015_12_26-AM-09_46_57

Theory : arithmetic


Home Index