Nuprl Lemma : le-iff-less-or-equal
∀x,y:ℤ.  uiff(x ≤ y;x < y ∨ (x = y ∈ ℤ))
Proof
Definitions occuring in Statement : 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
guard: {T}
, 
less_than: a < b
, 
squash: ↓T
, 
cand: A c∧ B
, 
sq_type: SQType(T)
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
less_than'_wf, 
le_wf, 
or_wf, 
less_than_wf, 
equal-wf-base, 
int_subtype_base, 
less-trichotomy, 
less_than_irreflexivity, 
less_than_transitivity, 
subtype_base_sq, 
top_wf, 
less_than_anti-reflexive
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
voidElimination, 
extract_by_obid, 
isectElimination, 
hypothesis, 
axiomEquality, 
rename, 
intEquality, 
applyEquality, 
unionElimination, 
inlFormation, 
inrFormation, 
imageElimination, 
independent_functionElimination, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
instantiate, 
cumulativity, 
isect_memberEquality, 
voidEquality, 
lessCases, 
axiomSqEquality, 
natural_numberEquality
Latex:
\mforall{}x,y:\mBbbZ{}.    uiff(x  \mleq{}  y;x  <  y  \mvee{}  (x  =  y))
Date html generated:
2019_06_20-AM-11_22_46
Last ObjectModification:
2018_09_10-PM-01_12_31
Theory : arithmetic
Home
Index