Nuprl Lemma : le-iff-less-or-equal

x,y:ℤ.  uiff(x ≤ y;x < y ∨ (x y ∈ ℤ))


Proof




Definitions occuring in Statement :  less_than: a < b uiff: uiff(P;Q) le: A ≤ B all: x:A. B[x] or: P ∨ Q int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T le: A ≤ B not: ¬A implies:  Q false: False uall: [x:A]. B[x] prop: subtype_rel: A ⊆B or: P ∨ Q guard: {T} less_than: a < b squash: T cand: c∧ B sq_type: SQType(T) top: Top less_than': less_than'(a;b) true: True
Lemmas referenced :  less_than'_wf le_wf or_wf less_than_wf equal-wf-base int_subtype_base less-trichotomy less_than_irreflexivity less_than_transitivity subtype_base_sq top_wf less_than_anti-reflexive
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality voidElimination extract_by_obid isectElimination hypothesis axiomEquality rename intEquality applyEquality unionElimination inlFormation inrFormation imageElimination independent_functionElimination because_Cache imageMemberEquality baseClosed independent_isectElimination instantiate cumulativity isect_memberEquality voidEquality lessCases axiomSqEquality natural_numberEquality

Latex:
\mforall{}x,y:\mBbbZ{}.    uiff(x  \mleq{}  y;x  <  y  \mvee{}  (x  =  y))



Date html generated: 2019_06_20-AM-11_22_46
Last ObjectModification: 2018_09_10-PM-01_12_31

Theory : arithmetic


Home Index