Nuprl Lemma : less_than_irreflexivity

[x:ℤ]. (x <  False)


Proof




Definitions occuring in Statement :  less_than: a < b uall: [x:A]. B[x] implies:  Q false: False int:
Definitions unfolded in proof :  prop: false: False implies:  Q member: t ∈ T uall: [x:A]. B[x] or: P ∨ Q all: x:A. B[x] and: P ∧ Q less_than': less_than'(a;b) squash: T less_than: a < b
Lemmas referenced :  less_than_wf add-monotonic add-inverse
Rules used in proof :  intEquality voidElimination dependent_functionElimination lambdaEquality sqequalRule hypothesisEquality thin isectElimination sqequalHypSubstitution lemma_by_obid hypothesis lambdaFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution minusEquality inlFormation because_Cache extract_by_obid independent_functionElimination productElimination imageElimination

Latex:
\mforall{}[x:\mBbbZ{}].  (x  <  x  {}\mRightarrow{}  False)



Date html generated: 2019_06_20-AM-11_22_42
Last ObjectModification: 2018_08_17-AM-11_58_12

Theory : arithmetic


Home Index