Nuprl Lemma : less_than_irreflexivity
∀[x:ℤ]. (x < x 
⇒ False)
Proof
Definitions occuring in Statement : 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
false: False
, 
int: ℤ
Definitions unfolded in proof : 
prop: ℙ
, 
false: False
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
Lemmas referenced : 
less_than_wf, 
add-monotonic, 
add-inverse
Rules used in proof : 
intEquality, 
voidElimination, 
dependent_functionElimination, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
hypothesis, 
lambdaFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
minusEquality, 
inlFormation, 
because_Cache, 
extract_by_obid, 
independent_functionElimination, 
productElimination, 
imageElimination
Latex:
\mforall{}[x:\mBbbZ{}].  (x  <  x  {}\mRightarrow{}  False)
Date html generated:
2019_06_20-AM-11_22_42
Last ObjectModification:
2018_08_17-AM-11_58_12
Theory : arithmetic
Home
Index