Nuprl Lemma : add-inverse

[x:ℤ]. (x (-x) 0)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] add: m minus: -n natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T guard: {T} implies:  Q all: x:A. B[x] sq_type: SQType(T) uimplies: supposing a
Lemmas referenced :  subtype_base_sq int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut addInverse hypothesisEquality hypothesis axiomSqEquality Error :universeIsType,  intEquality independent_functionElimination equalitySymmetry equalityTransitivity dependent_functionElimination independent_isectElimination cumulativity isectElimination sqequalHypSubstitution lemma_by_obid instantiate thin

Latex:
\mforall{}[x:\mBbbZ{}].  (x  +  (-x)  \msim{}  0)



Date html generated: 2019_06_20-AM-11_22_03
Last ObjectModification: 2018_10_15-PM-03_13_16

Theory : arithmetic


Home Index