Nuprl Lemma : add-inverse
∀[x:ℤ]. (x + (-x) ~ 0)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x], 
add: n + m, 
minus: -n, 
natural_number: $n, 
int: ℤ, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
guard: {T}, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
sq_type: SQType(T), 
uimplies: b supposing a
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
addInverse, 
hypothesisEquality, 
hypothesis, 
axiomSqEquality, 
Error :universeIsType, 
intEquality, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
independent_isectElimination, 
cumulativity, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
instantiate, 
thin
Latex:
\mforall{}[x:\mBbbZ{}].  (x  +  (-x)  \msim{}  0)
Date html generated:
2019_06_20-AM-11_22_03
Last ObjectModification:
2018_10_15-PM-03_13_16
Theory : arithmetic
Home
Index