Nuprl Lemma : less_than_transitivity
∀[x,y,z:ℤ]. (x < z) supposing (y < z and x < y)
Proof
Definitions occuring in Statement :
less_than: a < b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
int: ℤ
Definitions unfolded in proof :
prop: ℙ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
cand: A c∧ B
,
and: P ∧ Q
,
squash: ↓T
,
less_than: a < b
,
less_than': less_than'(a;b)
Lemmas referenced :
member-less_than,
less_than_wf
Rules used in proof :
equalitySymmetry,
equalityTransitivity,
independent_isectElimination,
isect_memberEquality,
isect_memberFormation,
intEquality,
because_Cache,
isectElimination,
extract_by_obid,
baseClosed,
imageMemberEquality,
sqequalRule,
hypothesisEquality,
hypothesis,
independent_pairFormation,
thin,
productElimination,
cut,
introduction,
imageElimination,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution,
sqequalHypSubstitution,
Error :lessTransitive
Latex:
\mforall{}[x,y,z:\mBbbZ{}]. (x < z) supposing (y < z and x < y)
Date html generated:
2019_06_20-AM-11_22_43
Last ObjectModification:
2018_10_11-PM-03_46_40
Theory : arithmetic
Home
Index