Nuprl Lemma : less_than_transitivity
∀[x,y,z:ℤ].  (x < z) supposing (y < z and x < y)
Proof
Definitions occuring in Statement : 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
prop: ℙ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
squash: ↓T
, 
less_than: a < b
, 
less_than': less_than'(a;b)
Lemmas referenced : 
member-less_than, 
less_than_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination, 
isect_memberEquality, 
isect_memberFormation, 
intEquality, 
because_Cache, 
isectElimination, 
extract_by_obid, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
thin, 
productElimination, 
cut, 
introduction, 
imageElimination, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalHypSubstitution, 
Error :lessTransitive
Latex:
\mforall{}[x,y,z:\mBbbZ{}].    (x  <  z)  supposing  (y  <  z  and  x  <  y)
Date html generated:
2019_06_20-AM-11_22_43
Last ObjectModification:
2018_10_11-PM-03_46_40
Theory : arithmetic
Home
Index