Nuprl Lemma : member-less_than
∀[a,b:ℤ].  Ax ∈ a < b supposing a < b
Proof
Definitions occuring in Statement : 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int: ℤ, 
axiom: Ax
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
less_than: a < b, 
squash: ↓T, 
and: P ∧ Q, 
cand: A c∧ B, 
prop: ℙ
Lemmas referenced : 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
imageElimination, 
productElimination, 
thin, 
hypothesis, 
independent_pairFormation, 
hypothesisEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
isect_memberEquality, 
because_Cache, 
intEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].    Ax  \mmember{}  a  <  b  supposing  a  <  b
Date html generated:
2016_05_13-PM-03_20_09
Last ObjectModification:
2016_01_14-PM-04_35_00
Theory : basic_types
Home
Index