Nuprl Lemma : zero-add

[x:ℤ]. (0 x)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] add: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] guard: {T} implies:  Q sq_type: SQType(T) uimplies: supposing a
Lemmas referenced :  subtype_base_sq int_subtype_base
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  addZero hypothesisEquality hypothesis Error :universeIsType,  intEquality axiomSqEquality introduction isect_memberFormation thin dependent_functionElimination sqequalHypSubstitution independent_functionElimination equalitySymmetry equalityTransitivity independent_isectElimination cumulativity isectElimination lemma_by_obid instantiate

Latex:
\mforall{}[x:\mBbbZ{}].  (0  +  x  \msim{}  x)



Date html generated: 2019_06_20-AM-11_22_06
Last ObjectModification: 2018_10_15-PM-09_52_36

Theory : arithmetic


Home Index