Nuprl Lemma : add-zero
∀[x:ℤ]. (x + 0 ~ x)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
Lemmas referenced : 
add-commutes, 
zero-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
intEquality
Latex:
\mforall{}[x:\mBbbZ{}].  (x  +  0  \msim{}  x)
Date html generated:
2016_05_13-PM-03_28_57
Last ObjectModification:
2015_12_26-AM-09_47_59
Theory : arithmetic
Home
Index