Nuprl Lemma : assert_of_lt_int
∀[x,y:ℤ].  uiff(↑x <z y;x < y)
Proof
Definitions occuring in Statement : 
assert: ↑b
, 
lt_int: i <z j
, 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
false: False
, 
true: True
, 
bool: 𝔹
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
prop: ℙ
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
lt_int: i <z j
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
top: Top
, 
btrue: tt
, 
cand: A c∧ B
, 
squash: ↓T
, 
bfalse: ff
, 
not: ¬A
, 
sq_stable: SqStable(P)
Lemmas referenced : 
member-less_than, 
less_than_wf, 
equal_wf, 
false_wf, 
true_wf, 
bool_wf, 
lt_int_wf, 
assert_wf, 
top_wf, 
sq_stable_from_decidable, 
btrue_wf, 
bfalse_wf, 
decidable__assert
Rules used in proof : 
intEquality, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
independent_pairEquality, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
voidElimination, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
unionElimination, 
lambdaFormation, 
sqequalRule, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesis, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
lessCases, 
axiomSqEquality, 
voidEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
promote_hyp
Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(\muparrow{}x  <z  y;x  <  y)
Date html generated:
2019_06_20-AM-11_20_12
Last ObjectModification:
2018_09_02-PM-02_50_31
Theory : union
Home
Index