Nuprl Lemma : add_functionality_wrt_le
∀[i1,i2,j1,j2:ℤ].  ((i1 + i2) ≤ (j1 + j2)) supposing ((i2 ≤ j2) and (i1 ≤ j1))
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
add: n + m
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
rev_uimplies: rev_uimplies(P;Q)
, 
or: P ∨ Q
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
, 
top: Top
Lemmas referenced : 
le-iff-less-or-equal, 
add-monotonic, 
equal-wf-base, 
int_subtype_base, 
less_than_wf, 
less_than'_wf, 
le_wf, 
add-commutes
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
addEquality, 
unionElimination, 
inlFormation, 
independent_functionElimination, 
sqequalRule, 
inrFormation, 
isectElimination, 
because_Cache, 
applyEquality, 
intEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
isect_memberFormation, 
independent_pairEquality, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[i1,i2,j1,j2:\mBbbZ{}].    ((i1  +  i2)  \mleq{}  (j1  +  j2))  supposing  ((i2  \mleq{}  j2)  and  (i1  \mleq{}  j1))
Date html generated:
2019_06_20-AM-11_22_52
Last ObjectModification:
2018_08_17-AM-11_59_31
Theory : arithmetic
Home
Index