Nuprl Lemma : add-mul-special
∀[x:ℤ]. ∀[y:Top].  (x + (y * x) ~ (1 + y) * x)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
Lemmas referenced : 
top_wf, 
mul-distributes-right, 
one-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
intEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[y:Top].    (x  +  (y  *  x)  \msim{}  (1  +  y)  *  x)
Date html generated:
2016_05_13-PM-03_29_29
Last ObjectModification:
2015_12_26-AM-09_47_48
Theory : arithmetic
Home
Index