Nuprl Lemma : add-mul-special

[x:ℤ]. ∀[y:Top].  (x (y x) (1 y) x)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top multiply: m add: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top
Lemmas referenced :  top_wf mul-distributes-right one-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom lemma_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache intEquality voidElimination voidEquality

Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[y:Top].    (x  +  (y  *  x)  \msim{}  (1  +  y)  *  x)



Date html generated: 2016_05_13-PM-03_29_29
Last ObjectModification: 2015_12_26-AM-09_47_48

Theory : arithmetic


Home Index