Nuprl Lemma : zero-mul

[x:ℤ]. (0 0)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] multiply: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top
Lemmas referenced :  mul-distributes-right one-mul add-associates add-inverse add-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality voidElimination voidEquality hypothesis because_Cache sqequalAxiom intEquality multiplyEquality natural_numberEquality

Latex:
\mforall{}[x:\mBbbZ{}].  (0  *  x  \msim{}  0)



Date html generated: 2016_05_13-PM-03_29_14
Last ObjectModification: 2015_12_26-AM-09_47_52

Theory : arithmetic


Home Index