Nuprl Lemma : zero-mul
∀[x:ℤ]. (0 * x ~ 0)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
Lemmas referenced : 
mul-distributes-right, 
one-mul, 
add-associates, 
add-inverse, 
add-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
because_Cache, 
sqequalAxiom, 
intEquality, 
multiplyEquality, 
natural_numberEquality
Latex:
\mforall{}[x:\mBbbZ{}].  (0  *  x  \msim{}  0)
Date html generated:
2016_05_13-PM-03_29_14
Last ObjectModification:
2015_12_26-AM-09_47_52
Theory : arithmetic
Home
Index