Nuprl Lemma : add-associates

[x,y,z:Top].  ((x y) z)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top add: m sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T top: Top guard: {T} sq_type: SQType(T) prop: uimplies: supposing a implies:  Q and: P ∧ Q has-value: (a)↓ uall: [x:A]. B[x]
Lemmas referenced :  int-add-exception top_wf is-exception_wf has-value_wf_base int_subtype_base subtype_base_sq equal_wf int-value-type value-type-has-value
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  addAssociative hypothesisEquality hypothesis Error :inhabitedIsType,  Error :universeIsType,  intEquality addEquality voidEquality voidElimination because_Cache isect_memberEquality axiomSqEquality exceptionSqequal axiomSqleEquality addExceptionCases sqleReflexivity cumulativity instantiate independent_functionElimination dependent_functionElimination independent_isectElimination isectElimination extract_by_obid lambdaFormation equalitySymmetry equalityTransitivity productElimination baseClosed closedConclusion baseApply sqequalRule sqequalHypSubstitution callbyvalueAdd divergentSqle thin sqleRule sqequalSqle introduction isect_memberFormation

Latex:
\mforall{}[x,y,z:Top].    ((x  +  y)  +  z  \msim{}  x  +  y  +  z)



Date html generated: 2019_06_20-AM-11_22_01
Last ObjectModification: 2018_10_15-PM-00_54_21

Theory : arithmetic


Home Index