Nuprl Lemma : not-le-2

x,y:ℤ.  uiff(¬(x ≤ y);(y 1) ≤ x)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) le: A ≤ B all: x:A. B[x] not: ¬A add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q le: A ≤ B not: ¬A false: False prop: rev_implies:  Q subtype_rel: A ⊆B top: Top
Lemmas referenced :  iff_weakening_uiff le_wf less-iff-le less_than'_wf less_than_wf uiff_wf not_wf not-le add-commutes
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut addLevel sqequalHypSubstitution productElimination thin independent_pairFormation isect_memberFormation introduction independent_isectElimination lemma_by_obid isectElimination because_Cache addEquality natural_numberEquality hypothesisEquality hypothesis independent_functionElimination dependent_functionElimination sqequalRule independent_pairEquality lambdaEquality voidElimination cumulativity axiomEquality equalityTransitivity equalitySymmetry intEquality applyEquality isect_memberEquality voidEquality

Latex:
\mforall{}x,y:\mBbbZ{}.    uiff(\mneg{}(x  \mleq{}  y);(y  +  1)  \mleq{}  x)



Date html generated: 2016_05_13-PM-03_30_58
Last ObjectModification: 2015_12_26-AM-09_46_21

Theory : arithmetic


Home Index