Nuprl Lemma : not-le
∀x,y:ℤ.  uiff(¬(x ≤ y);y < x)
Proof
Definitions occuring in Statement : 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
less_than: a < b
, 
squash: ↓T
, 
le: A ≤ B
, 
cand: A c∧ B
Lemmas referenced : 
less_than'_wf, 
less_than_wf, 
le_wf, 
not_wf, 
decidable__lt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
independent_pairFormation, 
isect_memberFormation, 
isectElimination, 
introduction, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
lambdaEquality, 
intEquality, 
imageElimination, 
productElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}x,y:\mBbbZ{}.    uiff(\mneg{}(x  \mleq{}  y);y  <  x)
Date html generated:
2016_05_13-PM-03_29_44
Last ObjectModification:
2016_01_14-PM-06_41_57
Theory : arithmetic
Home
Index