Nuprl Lemma : not-le

x,y:ℤ.  uiff(¬(x ≤ y);y < x)


Proof




Definitions occuring in Statement :  less_than: a < b uiff: uiff(P;Q) le: A ≤ B all: x:A. B[x] not: ¬A int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: uall: [x:A]. B[x] not: ¬A implies:  Q false: False less_than: a < b squash: T le: A ≤ B cand: c∧ B
Lemmas referenced :  less_than'_wf less_than_wf le_wf not_wf decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis unionElimination independent_pairFormation isect_memberFormation isectElimination introduction independent_functionElimination voidElimination sqequalRule lambdaEquality intEquality imageElimination productElimination imageMemberEquality baseClosed

Latex:
\mforall{}x,y:\mBbbZ{}.    uiff(\mneg{}(x  \mleq{}  y);y  <  x)



Date html generated: 2016_05_13-PM-03_29_44
Last ObjectModification: 2016_01_14-PM-06_41_57

Theory : arithmetic


Home Index