Nuprl Lemma : not-le
∀x,y:ℤ. uiff(¬(x ≤ y);y < x)
Proof
Definitions occuring in Statement :
less_than: a < b
,
uiff: uiff(P;Q)
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
not: ¬A
,
int: ℤ
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
decidable: Dec(P)
,
or: P ∨ Q
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
less_than: a < b
,
squash: ↓T
,
le: A ≤ B
,
cand: A c∧ B
Lemmas referenced :
less_than'_wf,
less_than_wf,
le_wf,
not_wf,
decidable__lt
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
hypothesis,
unionElimination,
independent_pairFormation,
isect_memberFormation,
isectElimination,
introduction,
independent_functionElimination,
voidElimination,
sqequalRule,
lambdaEquality,
intEquality,
imageElimination,
productElimination,
imageMemberEquality,
baseClosed
Latex:
\mforall{}x,y:\mBbbZ{}. uiff(\mneg{}(x \mleq{} y);y < x)
Date html generated:
2016_05_13-PM-03_29_44
Last ObjectModification:
2016_01_14-PM-06_41_57
Theory : arithmetic
Home
Index