Nuprl Lemma : subtract-1-ge-0
∀z:ℤ. (0 < z 
⇒ ((z - 1) ≥ 0 ))
Proof
Definitions occuring in Statement : 
less_than: a < b
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
Lemmas referenced : 
decidable__le, 
subtract_wf, 
istype-false, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
istype-void, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
natural_numberEquality, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
addEquality, 
sqequalRule, 
applyEquality, 
Error :lambdaEquality_alt, 
Error :isect_memberEquality_alt, 
Error :universeIsType, 
intEquality, 
minusEquality, 
Error :inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache
Latex:
\mforall{}z:\mBbbZ{}.  (0  <  z  {}\mRightarrow{}  ((z  -  1)  \mgeq{}  0  ))
Date html generated:
2019_06_20-AM-11_23_07
Last ObjectModification:
2018_09_29-AM-11_35_51
Theory : arithmetic
Home
Index