Nuprl Lemma : subtract-1-ge-0

z:ℤ(0 <  ((z 1) ≥ ))


Proof




Definitions occuring in Statement :  less_than: a < b ge: i ≥  all: x:A. B[x] implies:  Q subtract: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True prop:
Lemmas referenced :  decidable__le subtract_wf istype-false not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top istype-void minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin natural_numberEquality isectElimination hypothesisEquality hypothesis unionElimination independent_pairFormation voidElimination productElimination independent_functionElimination independent_isectElimination addEquality sqequalRule applyEquality Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  Error :universeIsType,  intEquality minusEquality Error :inhabitedIsType,  equalityTransitivity equalitySymmetry because_Cache

Latex:
\mforall{}z:\mBbbZ{}.  (0  <  z  {}\mRightarrow{}  ((z  -  1)  \mgeq{}  0  ))



Date html generated: 2019_06_20-AM-11_23_07
Last ObjectModification: 2018_09_29-AM-11_35_51

Theory : arithmetic


Home Index