Nuprl Lemma : decidable__le

i,j:ℤ.  Dec(i ≤ j)


Proof




Definitions occuring in Statement :  decidable: Dec(P) le: A ≤ B all: x:A. B[x] int:
Definitions unfolded in proof :  le: A ≤ B all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T prop: implies:  Q decidable: Dec(P) or: P ∨ Q and: P ∧ Q cand: c∧ B
Lemmas referenced :  decidable__and not_wf less_than'_wf and_wf member_wf decidable__not decidable__less_than'
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality intEquality independent_functionElimination dependent_functionElimination inlFormation because_Cache independent_pairFormation

Latex:
\mforall{}i,j:\mBbbZ{}.    Dec(i  \mleq{}  j)



Date html generated: 2016_05_13-PM-03_20_01
Last ObjectModification: 2015_12_26-AM-09_09_21

Theory : sqequal_1


Home Index