Nuprl Lemma : decidable__le
∀i,j:ℤ.  Dec(i ≤ j)
Proof
Definitions occuring in Statement : 
decidable: Dec(P)
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
decidable__and, 
not_wf, 
less_than'_wf, 
and_wf, 
member_wf, 
decidable__not, 
decidable__less_than'
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
intEquality, 
independent_functionElimination, 
dependent_functionElimination, 
inlFormation, 
because_Cache, 
independent_pairFormation
Latex:
\mforall{}i,j:\mBbbZ{}.    Dec(i  \mleq{}  j)
Date html generated:
2016_05_13-PM-03_20_01
Last ObjectModification:
2015_12_26-AM-09_09_21
Theory : sqequal_1
Home
Index