Nuprl Lemma : decidable__less_than'
∀i,j:ℤ.  Dec(less_than'(i;j))
Proof
Definitions occuring in Statement : 
less_than': less_than'(a;b)
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
less_than': less_than'(a;b)
, 
decidable: Dec(P)
, 
not: ¬A
, 
or: P ∨ Q
, 
true: True
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
false: False
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
true_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
lessCases, 
hypothesisEquality, 
intEquality, 
thin, 
baseClosed, 
inlEquality, 
sqequalRule, 
axiomEquality, 
natural_numberEquality, 
functionEquality, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
hypothesis, 
inrEquality, 
lambdaEquality, 
voidElimination, 
because_Cache, 
isectElimination
Latex:
\mforall{}i,j:\mBbbZ{}.    Dec(less\_than'(i;j))
Date html generated:
2019_06_20-AM-11_19_44
Last ObjectModification:
2018_08_04-PM-01_52_40
Theory : sqequal_1
Home
Index