Nuprl Lemma : decidable__and

[P,Q:ℙ].  (Dec(P)  (P  Dec(Q))  Dec(P ∧ Q))


Proof




Definitions occuring in Statement :  decidable: Dec(P) uall: [x:A]. B[x] prop: implies:  Q and: P ∧ Q
Definitions unfolded in proof :  decidable: Dec(P) uall: [x:A]. B[x] implies:  Q or: P ∨ Q and: P ∧ Q cand: c∧ B member: t ∈ T prop: guard: {T} not: ¬A false: False
Lemmas referenced :  not_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation sqequalHypSubstitution unionElimination thin independent_functionElimination hypothesis inlFormation cut independent_pairFormation introduction extract_by_obid isectElimination productEquality cumulativity hypothesisEquality inrFormation productElimination voidElimination functionEquality Error :inhabitedIsType,  Error :universeIsType,  universeEquality

Latex:
\mforall{}[P,Q:\mBbbP{}].    (Dec(P)  {}\mRightarrow{}  (P  {}\mRightarrow{}  Dec(Q))  {}\mRightarrow{}  Dec(P  \mwedge{}  Q))



Date html generated: 2019_06_20-AM-11_14_56
Last ObjectModification: 2018_09_26-AM-10_42_08

Theory : core_2


Home Index