Nuprl Lemma : decidable__not
∀[P:ℙ]. (Dec(P) 
⇒ Dec(¬P))
Proof
Definitions occuring in Statement : 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
not: ¬A
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
decidable_wf, 
decidable__false, 
false_wf, 
decidable__implies
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
universeEquality
Latex:
\mforall{}[P:\mBbbP{}].  (Dec(P)  {}\mRightarrow{}  Dec(\mneg{}P))
Date html generated:
2016_05_13-PM-03_09_11
Last ObjectModification:
2016_01_06-PM-05_27_16
Theory : core_2
Home
Index