Nuprl Lemma : not-ge-2
∀x,y:ℤ.  uiff(¬(x ≥ y );(x + 1) ≤ y)
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
ge: i ≥ j 
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
less_than'_wf, 
le_wf, 
iff_weakening_uiff, 
not_wf, 
not-le-2, 
uiff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
intEquality, 
cut, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
addEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
addLevel, 
independent_isectElimination, 
independent_functionElimination, 
cumulativity
Latex:
\mforall{}x,y:\mBbbZ{}.    uiff(\mneg{}(x  \mgeq{}  y  );(x  +  1)  \mleq{}  y)
Date html generated:
2016_05_13-PM-03_31_03
Last ObjectModification:
2015_12_26-AM-09_46_15
Theory : arithmetic
Home
Index