Nuprl Lemma : not-ge-2

x,y:ℤ.  uiff(¬(x ≥ );(x 1) ≤ y)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) ge: i ≥  le: A ≤ B all: x:A. B[x] not: ¬A add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] ge: i ≥  member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a le: A ≤ B not: ¬A implies:  Q false: False uall: [x:A]. B[x] prop: iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  less_than'_wf le_wf iff_weakening_uiff not_wf not-le-2 uiff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation intEquality cut independent_pairFormation isect_memberFormation introduction hypothesis sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality voidElimination lemma_by_obid isectElimination addEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache addLevel independent_isectElimination independent_functionElimination cumulativity

Latex:
\mforall{}x,y:\mBbbZ{}.    uiff(\mneg{}(x  \mgeq{}  y  );(x  +  1)  \mleq{}  y)



Date html generated: 2016_05_13-PM-03_31_03
Last ObjectModification: 2015_12_26-AM-09_46_15

Theory : arithmetic


Home Index