Nuprl Lemma : minus-minus
∀[x:ℤ]. (--x ~ x)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
minus: -n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
Lemmas referenced : 
add-inverse-unique, 
add-inverse2, 
subtype_base_sq, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
intEquality, 
equalitySymmetry, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
independent_functionElimination, 
minusEquality, 
hypothesisEquality, 
sqequalRule, 
natural_numberEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity
Latex:
\mforall{}[x:\mBbbZ{}].  (--x  \msim{}  x)
Date html generated:
2016_05_13-PM-03_29_25
Last ObjectModification:
2015_12_26-AM-09_47_44
Theory : arithmetic
Home
Index