Nuprl Lemma : add-inverse2

[x:ℤ]. ((-x) 0)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] add: m minus: -n natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top
Lemmas referenced :  add-commutes add-inverse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin minusEquality hypothesisEquality isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom intEquality

Latex:
\mforall{}[x:\mBbbZ{}].  ((-x)  +  x  \msim{}  0)



Date html generated: 2016_05_13-PM-03_28_50
Last ObjectModification: 2015_12_26-AM-09_48_04

Theory : arithmetic


Home Index