Nuprl Lemma : add-inverse-unique

[x,y:ℤ].  (((x y) 0 ∈ ℤ (y (-x) ∈ ℤ))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] implies:  Q add: m minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: subtype_rel: A ⊆B top: Top
Lemmas referenced :  equal-wf-base int_subtype_base add-associates add-inverse2 add-zero zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin intEquality sqequalRule baseApply closedConclusion baseClosed hypothesisEquality applyEquality because_Cache lambdaEquality dependent_functionElimination axiomEquality isect_memberEquality addEquality minusEquality voidElimination voidEquality

Latex:
\mforall{}[x,y:\mBbbZ{}].    (((x  +  y)  =  0)  {}\mRightarrow{}  (y  =  (-x)))



Date html generated: 2017_04_14-AM-07_16_16
Last ObjectModification: 2017_02_27-PM-02_51_07

Theory : arithmetic


Home Index