Nuprl Lemma : add-inverse-unique
∀[x,y:ℤ].  (((x + y) = 0 ∈ ℤ) ⇒ (y = (-x) ∈ ℤ))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
add: n + m, 
minus: -n, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
top: Top
Lemmas referenced : 
equal-wf-base, 
int_subtype_base, 
add-associates, 
add-inverse2, 
add-zero, 
zero-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
addEquality, 
minusEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[x,y:\mBbbZ{}].    (((x  +  y)  =  0)  {}\mRightarrow{}  (y  =  (-x)))
Date html generated:
2017_04_14-AM-07_16_16
Last ObjectModification:
2017_02_27-PM-02_51_07
Theory : arithmetic
Home
Index