Nuprl Lemma : minus-one-mul
∀[x:ℤ]. (-x ~ (-1) * x)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
minus: -n
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
top: Top
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
Lemmas referenced : 
add-inverse-unique, 
mul-distributes-right, 
one-mul, 
zero-mul, 
subtype_base_sq, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
intEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
multiplyEquality, 
minusEquality, 
natural_numberEquality, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
instantiate, 
cumulativity, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[x:\mBbbZ{}].  (-x  \msim{}  (-1)  *  x)
Date html generated:
2016_05_13-PM-03_29_20
Last ObjectModification:
2015_12_26-AM-09_47_42
Theory : arithmetic
Home
Index