Nuprl Lemma : minus-one-mul

[x:ℤ]. (-x (-1) x)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] multiply: m minus: -n natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q top: Top uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] guard: {T}
Lemmas referenced :  add-inverse-unique mul-distributes-right one-mul zero-mul subtype_base_sq int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom intEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality multiplyEquality minusEquality natural_numberEquality independent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule instantiate cumulativity independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x:\mBbbZ{}].  (-x  \msim{}  (-1)  *  x)



Date html generated: 2016_05_13-PM-03_29_20
Last ObjectModification: 2015_12_26-AM-09_47_42

Theory : arithmetic


Home Index