Nuprl Lemma : minus-one-mul-top
∀[x:Top]. (-x ~ (-1) * x)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
multiply: n * m
, 
minus: -n
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
has-value: (a)↓
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
false: False
Lemmas referenced : 
top_wf, 
exception-not-value, 
is-exception_wf, 
has-value_wf_base, 
minus-one-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
sqequalSqle, 
divergentSqle, 
callbyvalueMinus, 
sqequalHypSubstitution, 
hypothesis, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
sqleReflexivity, 
minusExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
callbyvalueMultiply, 
productElimination, 
multiplyExceptionCases, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
sqequalAxiom
Latex:
\mforall{}[x:Top].  (-x  \msim{}  (-1)  *  x)
Date html generated:
2016_05_13-PM-03_29_22
Last ObjectModification:
2016_01_14-PM-06_41_40
Theory : arithmetic
Home
Index