Nuprl Lemma : minus-one-mul-top

[x:Top]. (-x (-1) x)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top multiply: m minus: -n natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ and: P ∧ Q uimplies: supposing a implies:  Q false: False
Lemmas referenced :  top_wf exception-not-value is-exception_wf has-value_wf_base minus-one-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin sqequalSqle divergentSqle callbyvalueMinus sqequalHypSubstitution hypothesis baseApply closedConclusion baseClosed hypothesisEquality lemma_by_obid isectElimination equalityTransitivity equalitySymmetry sqleReflexivity minusExceptionCases axiomSqleEquality exceptionSqequal callbyvalueMultiply productElimination multiplyExceptionCases independent_isectElimination independent_functionElimination voidElimination sqequalAxiom

Latex:
\mforall{}[x:Top].  (-x  \msim{}  (-1)  *  x)



Date html generated: 2016_05_13-PM-03_29_22
Last ObjectModification: 2016_01_14-PM-06_41_40

Theory : arithmetic


Home Index