Nuprl Lemma : subtype_rel_sets_simple

[A:Type]. ∀[P,Q:A ⟶ ℙ].  {a:A| P[a]}  ⊆{b:A| Q[b]}  supposing ∀a:A. (P[a]  Q[a])


Proof




Definitions occuring in Statement :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop: all: x:A. B[x] implies:  Q
Lemmas referenced :  subtype_rel_sets istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache sqequalRule Error :lambdaEquality_alt,  applyEquality Error :universeIsType,  independent_isectElimination setElimination rename hypothesis Error :setIsType,  universeEquality axiomEquality Error :functionIsType,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :inhabitedIsType,  instantiate

Latex:
\mforall{}[A:Type].  \mforall{}[P,Q:A  {}\mrightarrow{}  \mBbbP{}].    \{a:A|  P[a]\}    \msubseteq{}r  \{b:A|  Q[b]\}    supposing  \mforall{}a:A.  (P[a]  {}\mRightarrow{}  Q[a])



Date html generated: 2019_06_20-AM-11_19_27
Last ObjectModification: 2018_10_31-PM-03_32_44

Theory : subtype_0


Home Index