Nuprl Lemma : subtype_rel_sets_simple
∀[A:Type]. ∀[P,Q:A ⟶ ℙ].  {a:A| P[a]}  ⊆r {b:A| Q[b]}  supposing ∀a:A. (P[a] ⇒ Q[a])
Proof
Definitions occuring in Statement : 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Lemmas referenced : 
subtype_rel_sets, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
sqequalRule, 
Error :lambdaEquality_alt, 
applyEquality, 
Error :universeIsType, 
independent_isectElimination, 
setElimination, 
rename, 
hypothesis, 
Error :setIsType, 
universeEquality, 
axiomEquality, 
Error :functionIsType, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
instantiate
Latex:
\mforall{}[A:Type].  \mforall{}[P,Q:A  {}\mrightarrow{}  \mBbbP{}].    \{a:A|  P[a]\}    \msubseteq{}r  \{b:A|  Q[b]\}    supposing  \mforall{}a:A.  (P[a]  {}\mRightarrow{}  Q[a])
Date html generated:
2019_06_20-AM-11_19_27
Last ObjectModification:
2018_10_31-PM-03_32_44
Theory : subtype_0
Home
Index