Nuprl Lemma : not-lt-2
∀x,y:ℤ.  uiff(¬x < y;y ≤ x)
Proof
Definitions occuring in Statement : 
less_than: a < b, 
uiff: uiff(P;Q), 
le: A ≤ B, 
all: ∀x:A. B[x], 
not: ¬A, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
le: A ≤ B, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
less_than: a < b, 
cand: A c∧ B, 
squash: ↓T
Lemmas referenced : 
le_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
less_than_wf, 
not_wf, 
less_than'_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
hypothesis, 
axiomEquality, 
independent_isectElimination, 
independent_functionElimination, 
intEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}x,y:\mBbbZ{}.    uiff(\mneg{}x  <  y;y  \mleq{}  x)
Date html generated:
2016_05_13-PM-03_31_01
Last ObjectModification:
2016_01_14-PM-06_41_07
Theory : arithmetic
Home
Index