Nuprl Lemma : neg_assert_of_eq_atom
∀[x,y:Atom].  uiff(¬↑x =a y;x ≠ y ∈ Atom )
Proof
Definitions occuring in Statement : 
assert: ↑b, 
eq_atom: x =a y, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
nequal: a ≠ b ∈ T , 
not: ¬A, 
atom: Atom
Definitions unfolded in proof : 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
guard: {T}, 
iff: P ⇐⇒ Q, 
nequal: a ≠ b ∈ T , 
not: ¬A, 
false: False, 
prop: ℙ, 
rev_implies: P ⇐ Q
Lemmas referenced : 
iff_weakening_uiff, 
not_wf, 
assert_wf, 
eq_atom_wf, 
equal-wf-base, 
atom_subtype_base, 
not_functionality_wrt_uiff, 
assert_of_eq_atom, 
nequal_wf
Rules used in proof : 
cut, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
productElimination, 
thin, 
independent_pairFormation, 
Error :isect_memberFormation_alt, 
introduction, 
independent_isectElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
atomEquality, 
applyEquality, 
sqequalRule, 
independent_functionElimination, 
because_Cache, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
instantiate, 
cumulativity, 
Error :universeIsType, 
Error :inhabitedIsType, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[x,y:Atom].    uiff(\mneg{}\muparrow{}x  =a  y;x  \mneq{}  y  \mmember{}  Atom  )
Date html generated:
2019_06_20-AM-11_31_31
Last ObjectModification:
2018_09_26-AM-11_24_50
Theory : bool_1
Home
Index