Nuprl Lemma : neg_assert_of_eq_atom

[x,y:Atom].  uiff(¬↑=a y;x ≠ y ∈ Atom )


Proof




Definitions occuring in Statement :  assert: b eq_atom: =a y uiff: uiff(P;Q) uall: [x:A]. B[x] nequal: a ≠ b ∈  not: ¬A atom: Atom
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B implies:  Q guard: {T} iff: ⇐⇒ Q nequal: a ≠ b ∈  not: ¬A false: False prop: rev_implies:  Q
Lemmas referenced :  iff_weakening_uiff not_wf assert_wf eq_atom_wf equal-wf-base atom_subtype_base not_functionality_wrt_uiff assert_of_eq_atom nequal_wf
Rules used in proof :  cut sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity productElimination thin independent_pairFormation Error :isect_memberFormation_alt,  introduction independent_isectElimination extract_by_obid isectElimination hypothesisEquality hypothesis atomEquality applyEquality sqequalRule independent_functionElimination because_Cache lambdaEquality dependent_functionElimination voidElimination instantiate cumulativity Error :universeIsType,  Error :inhabitedIsType,  independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x,y:Atom].    uiff(\mneg{}\muparrow{}x  =a  y;x  \mneq{}  y  \mmember{}  Atom  )



Date html generated: 2019_06_20-AM-11_31_31
Last ObjectModification: 2018_09_26-AM-11_24_50

Theory : bool_1


Home Index