Nuprl Lemma : assert_of_eq_atom

[x,y:Atom].  uiff(↑=a y;x y ∈ Atom)


Proof




Definitions occuring in Statement :  assert: b eq_atom: =a y uiff: uiff(P;Q) uall: [x:A]. B[x] atom: Atom equal: t ∈ T
Definitions unfolded in proof :  eq_atom: =a y uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a false: False implies:  Q not: ¬A prop: assert: b ifthenelse: if then else fi  all: x:A. B[x] bool: 𝔹 true: True subtype_rel: A ⊆B bfalse: ff or: P ∨ Q decidable: Dec(P) btrue: tt
Lemmas referenced :  assert_wf btrue_wf bfalse_wf bool_wf true_wf false_wf equal_wf equal-wf-base atom_subtype_base decidable__atom_equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut independent_pairFormation hypothesis Error :universeIsType,  extract_by_obid sqequalHypSubstitution isectElimination thin atom_eqEquality hypothesisEquality lambdaFormation unionElimination axiomEquality equalityTransitivity equalitySymmetry voidElimination dependent_functionElimination independent_functionElimination atomEquality applyEquality productElimination independent_pairEquality isect_memberEquality because_Cache Error :inhabitedIsType,  atom_eqReduceFalseSq natural_numberEquality atom_eqReduceTrueSq

Latex:
\mforall{}[x,y:Atom].    uiff(\muparrow{}x  =a  y;x  =  y)



Date html generated: 2019_06_20-AM-11_20_28
Last ObjectModification: 2018_09_26-AM-10_50_26

Theory : atom_1


Home Index