Nuprl Lemma : assert_of_eq_atom
∀[x,y:Atom].  uiff(↑x =a y;x = y ∈ Atom)
Proof
Definitions occuring in Statement : 
assert: ↑b
, 
eq_atom: x =a y
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
atom: Atom
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
eq_atom: x =a y
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
prop: ℙ
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
true: True
, 
subtype_rel: A ⊆r B
, 
bfalse: ff
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
btrue: tt
Lemmas referenced : 
assert_wf, 
btrue_wf, 
bfalse_wf, 
bool_wf, 
true_wf, 
false_wf, 
equal_wf, 
equal-wf-base, 
atom_subtype_base, 
decidable__atom_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
Error :universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
atom_eqEquality, 
hypothesisEquality, 
lambdaFormation, 
unionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
dependent_functionElimination, 
independent_functionElimination, 
atomEquality, 
applyEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
because_Cache, 
Error :inhabitedIsType, 
atom_eqReduceFalseSq, 
natural_numberEquality, 
atom_eqReduceTrueSq
Latex:
\mforall{}[x,y:Atom].    uiff(\muparrow{}x  =a  y;x  =  y)
Date html generated:
2019_06_20-AM-11_20_28
Last ObjectModification:
2018_09_26-AM-10_50_26
Theory : atom_1
Home
Index