Nuprl Lemma : eq_atom_wf
∀[x,y:Atom].  (x =a y ∈ 𝔹)
Proof
Definitions occuring in Statement : 
eq_atom: x =a y
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
atom: Atom
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eq_atom: x =a y
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
Lemmas referenced : 
btrue_wf, 
bfalse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
atom_eqEquality, 
hypothesisEquality, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
isect_memberEquality, 
isectElimination, 
thin, 
atomEquality, 
Error :universeIsType
Latex:
\mforall{}[x,y:Atom].    (x  =a  y  \mmember{}  \mBbbB{})
Date html generated:
2019_06_20-AM-11_19_53
Last ObjectModification:
2018_09_26-AM-10_50_30
Theory : basic_types
Home
Index