Nuprl Lemma : eq_atom_wf

[x,y:Atom].  (x =a y ∈ 𝔹)


Proof




Definitions occuring in Statement :  eq_atom: =a y bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T atom: Atom
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eq_atom: =a y false: False implies:  Q not: ¬A
Lemmas referenced :  btrue_wf bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule atom_eqEquality hypothesisEquality extract_by_obid hypothesis sqequalHypSubstitution axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality isectElimination thin atomEquality Error :universeIsType

Latex:
\mforall{}[x,y:Atom].    (x  =a  y  \mmember{}  \mBbbB{})



Date html generated: 2019_06_20-AM-11_19_53
Last ObjectModification: 2018_09_26-AM-10_50_30

Theory : basic_types


Home Index