Nuprl Lemma : assert-bnot
∀[p:𝔹]. ((↑¬bp) 
⇒ (¬↑p))
Proof
Definitions occuring in Statement : 
bnot: ¬bb
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
bfalse: ff
, 
prop: ℙ
Lemmas referenced : 
false_wf, 
assert_wf, 
bnot_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
sqequalRule, 
voidElimination, 
lemma_by_obid, 
hypothesis, 
independent_functionElimination, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination
Latex:
\mforall{}[p:\mBbbB{}].  ((\muparrow{}\mneg{}\msubb{}p)  {}\mRightarrow{}  (\mneg{}\muparrow{}p))
Date html generated:
2016_05_13-PM-03_57_01
Last ObjectModification:
2015_12_26-AM-10_51_58
Theory : bool_1
Home
Index