Nuprl Lemma : and-poly-constraints_wf
∀[Xs,Ys:polynomial-constraints() List].  (and-poly-constraints(Xs;Ys) ∈ polynomial-constraints() List)
Proof
Definitions occuring in Statement : 
and-poly-constraints: and-poly-constraints(Xs;Ys)
, 
polynomial-constraints: polynomial-constraints()
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and-poly-constraints: and-poly-constraints(Xs;Ys)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
list_accum_wf, 
polynomial-constraints_wf, 
list_wf, 
nil_wf, 
cons_wf, 
combine-pcs_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[Xs,Ys:polynomial-constraints()  List].
    (and-poly-constraints(Xs;Ys)  \mmember{}  polynomial-constraints()  List)
Date html generated:
2016_05_14-AM-07_08_16
Last ObjectModification:
2015_12_26-PM-01_08_00
Theory : omega
Home
Index