Nuprl Lemma : and-poly-constraints_wf

[Xs,Ys:polynomial-constraints() List].  (and-poly-constraints(Xs;Ys) ∈ polynomial-constraints() List)


Proof




Definitions occuring in Statement :  and-poly-constraints: and-poly-constraints(Xs;Ys) polynomial-constraints: polynomial-constraints() list: List uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and-poly-constraints: and-poly-constraints(Xs;Ys) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  list_accum_wf polynomial-constraints_wf list_wf nil_wf cons_wf combine-pcs_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[Xs,Ys:polynomial-constraints()  List].
    (and-poly-constraints(Xs;Ys)  \mmember{}  polynomial-constraints()  List)



Date html generated: 2016_05_14-AM-07_08_16
Last ObjectModification: 2015_12_26-PM-01_08_00

Theory : omega


Home Index