Nuprl Lemma : int_term_to_ipoly_wf
∀[t:int_term()]. (int_term_to_ipoly(t) ∈ iPolynomial())
Proof
Definitions occuring in Statement : 
int_term_to_ipoly: int_term_to_ipoly(t)
, 
iPolynomial: iPolynomial()
, 
int_term: int_term()
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_term_to_ipoly: int_term_to_ipoly(t)
, 
so_lambda: λ2x.t[x]
, 
iPolynomial: iPolynomial()
, 
all: ∀x:A. B[x]
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
squash: ↓T
, 
guard: {T}
, 
so_apply: x[s]
, 
prop: ℙ
, 
false: False
, 
not: ¬A
, 
iMonomial: iMonomial()
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
sorted: sorted(L)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
true: True
, 
sq_type: SQType(T)
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
or: P ∨ Q
, 
nat_plus: ℕ+
, 
less_than: a < b
Lemmas referenced : 
int_term_ind_wf_simple, 
iPolynomial_wf, 
nil_wf, 
iMonomial_wf, 
length_of_nil_lemma, 
int_seg_wf, 
length_wf, 
all_wf, 
imonomial-less_wf, 
select_wf, 
sq_stable__le, 
less_than_transitivity2, 
le_weakening2, 
cons_wf, 
nequal_wf, 
less_than_transitivity1, 
less_than_irreflexivity, 
equal_wf, 
sorted_wf, 
subtype_rel_self, 
length_of_cons_lemma, 
list_wf, 
subtype_base_sq, 
int_subtype_base, 
equal-wf-base, 
true_wf, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-associates, 
zero-add, 
add_functionality_wrt_le, 
add-commutes, 
le-add-cancel2, 
add_ipoly_wf, 
int_term_wf, 
minus-poly_wf, 
mul_ipoly_wf, 
subtract_wf, 
minus-zero, 
add-zero, 
not-equal-implies-less, 
one-mul, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
omega-shadow, 
le_reflexive, 
false_wf, 
less_than_wf, 
mul-distributes, 
mul-associates, 
mul-commutes, 
int_seg_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
int_eqEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
lambdaFormation, 
setElimination, 
rename, 
voidEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_functionElimination, 
independent_pairEquality, 
intEquality, 
voidElimination, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
isect_memberEquality, 
productEquality, 
addLevel, 
instantiate, 
cumulativity, 
addEquality, 
applyEquality, 
minusEquality, 
sqequalIntensionalEquality, 
axiomEquality, 
unionElimination, 
multiplyEquality, 
independent_pairFormation
Latex:
\mforall{}[t:int\_term()].  (int\_term\_to\_ipoly(t)  \mmember{}  iPolynomial())
Date html generated:
2017_09_29-PM-05_54_36
Last ObjectModification:
2017_07_26-PM-01_42_59
Theory : omega
Home
Index