Nuprl Lemma : int_term_to_ipoly_wf

[t:int_term()]. (int_term_to_ipoly(t) ∈ iPolynomial())


Proof




Definitions occuring in Statement :  int_term_to_ipoly: int_term_to_ipoly(t) iPolynomial: iPolynomial() int_term: int_term() uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_term_to_ipoly: int_term_to_ipoly(t) so_lambda: λ2x.t[x] iPolynomial: iPolynomial() all: x:A. B[x] int_seg: {i..j-} uimplies: supposing a sq_stable: SqStable(P) implies:  Q lelt: i ≤ j < k and: P ∧ Q squash: T guard: {T} so_apply: x[s] prop: false: False not: ¬A iMonomial: iMonomial() int_nzero: -o nequal: a ≠ b ∈  sorted: sorted(L) exists: x:A. B[x] top: Top true: True sq_type: SQType(T) uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] or: P ∨ Q nat_plus: + less_than: a < b
Lemmas referenced :  int_term_ind_wf_simple iPolynomial_wf nil_wf iMonomial_wf length_of_nil_lemma int_seg_wf length_wf all_wf imonomial-less_wf select_wf sq_stable__le less_than_transitivity2 le_weakening2 cons_wf nequal_wf less_than_transitivity1 less_than_irreflexivity equal_wf sorted_wf subtype_rel_self length_of_cons_lemma list_wf subtype_base_sq int_subtype_base equal-wf-base true_wf less-iff-le condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates zero-add add_functionality_wrt_le add-commutes le-add-cancel2 add_ipoly_wf int_term_wf minus-poly_wf mul_ipoly_wf subtract_wf minus-zero add-zero not-equal-implies-less one-mul add-mul-special two-mul mul-distributes-right zero-mul omega-shadow le_reflexive false_wf less_than_wf mul-distributes mul-associates mul-commutes int_seg_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality lambdaEquality int_eqEquality natural_numberEquality dependent_set_memberEquality lambdaFormation setElimination rename voidEquality because_Cache independent_isectElimination independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination dependent_functionElimination independent_pairEquality intEquality voidElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp isect_memberEquality productEquality addLevel instantiate cumulativity addEquality applyEquality minusEquality sqequalIntensionalEquality axiomEquality unionElimination multiplyEquality independent_pairFormation

Latex:
\mforall{}[t:int\_term()].  (int\_term\_to\_ipoly(t)  \mmember{}  iPolynomial())



Date html generated: 2017_09_29-PM-05_54_36
Last ObjectModification: 2017_07_26-PM-01_42_59

Theory : omega


Home Index