Nuprl Lemma : mul-distributes

[x,y,z:Top].  (x (y z) (x y) (x z))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top multiply: m add: m sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T top: Top guard: {T} sq_type: SQType(T) prop: uimplies: supposing a implies:  Q and: P ∧ Q has-value: (a)↓ uall: [x:A]. B[x] false: False
Lemmas referenced :  int-mul-exception int-add-exception top_wf is-exception_wf has-value_wf_base int_subtype_base subtype_base_sq equal_wf int-value-type value-type-has-value exception-not-value
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  multiplyDistributive hypothesisEquality hypothesis Error :inhabitedIsType,  Error :universeIsType,  intEquality multiplyEquality voidEquality voidElimination isect_memberEquality axiomSqEquality because_Cache exceptionSqequal addExceptionCases axiomSqleEquality multiplyExceptionCases sqleReflexivity cumulativity instantiate callbyvalueAdd independent_functionElimination dependent_functionElimination independent_isectElimination isectElimination extract_by_obid lambdaFormation equalitySymmetry equalityTransitivity productElimination baseClosed closedConclusion baseApply sqequalRule sqequalHypSubstitution callbyvalueMultiply divergentSqle thin sqleRule sqequalSqle introduction isect_memberFormation

Latex:
\mforall{}[x,y,z:Top].    (x  *  (y  +  z)  \msim{}  (x  *  y)  +  (x  *  z))



Date html generated: 2019_06_20-AM-11_22_12
Last ObjectModification: 2018_10_15-AM-11_14_36

Theory : arithmetic


Home Index