Nuprl Lemma : minus-poly_wf

[p:iPolynomial()]. (minus-poly(p) ∈ iPolynomial())


Proof




Definitions occuring in Statement :  minus-poly: minus-poly(p) iPolynomial: iPolynomial() uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iPolynomial: iPolynomial() minus-poly: minus-poly(p) all: x:A. B[x] int_seg: {i..j-} so_lambda: λ2x.t[x] uimplies: supposing a sq_stable: SqStable(P) implies:  Q lelt: i ≤ j < k and: P ∧ Q squash: T guard: {T} so_apply: x[s] prop: top: Top subtype_rel: A ⊆B exists: x:A. B[x] nat: le: A ≤ B less_than: a < b subtract: m sq_type: SQType(T) iMonomial: iMonomial() int_nzero: -o minus-monomial: minus-monomial(m) imonomial-less: imonomial-less(m1;m2) pi2: snd(t) imonomial-le: imonomial-le(m1;m2)
Lemmas referenced :  map_wf iMonomial_wf minus-monomial_wf int_seg_wf length_wf all_wf imonomial-less_wf select_wf sq_stable__le less_than_transitivity2 le_weakening2 iPolynomial_wf subtype_rel_list top_wf non_neg_length map_length length_wf_nat nat_wf set_subtype_base le_wf int_subtype_base equal_wf lelt_wf subtract_wf minus-one-mul add-swap add-commutes add-associates add-mul-special two-mul mul-distributes-right zero-mul zero-add one-mul subtype_base_sq map-length and_wf less_than_wf select-map int_seg_properties nat_properties int_nzero_properties not_wf equal-wf-base sorted_wf subtype_rel_self list_subtype_base list_wf assert_wf intlex_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality extract_by_obid isectElimination hypothesis lambdaEquality hypothesisEquality lambdaFormation natural_numberEquality sqequalRule because_Cache independent_isectElimination independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination voidEquality applyEquality independent_pairFormation dependent_pairFormation sqequalIntensionalEquality intEquality promote_hyp addEquality multiplyEquality instantiate cumulativity addLevel hyp_replacement applyLambdaEquality levelHypothesis productEquality

Latex:
\mforall{}[p:iPolynomial()].  (minus-poly(p)  \mmember{}  iPolynomial())



Date html generated: 2017_04_14-AM-08_58_40
Last ObjectModification: 2017_02_27-PM-03_41_19

Theory : omega


Home Index