Nuprl Lemma : minus-poly_wf
∀[p:iPolynomial()]. (minus-poly(p) ∈ iPolynomial())
Proof
Definitions occuring in Statement : 
minus-poly: minus-poly(p)
, 
iPolynomial: iPolynomial()
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iPolynomial: iPolynomial()
, 
minus-poly: minus-poly(p)
, 
all: ∀x:A. B[x]
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
squash: ↓T
, 
guard: {T}
, 
so_apply: x[s]
, 
prop: ℙ
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than: a < b
, 
subtract: n - m
, 
sq_type: SQType(T)
, 
iMonomial: iMonomial()
, 
int_nzero: ℤ-o
, 
minus-monomial: minus-monomial(m)
, 
imonomial-less: imonomial-less(m1;m2)
, 
pi2: snd(t)
, 
imonomial-le: imonomial-le(m1;m2)
Lemmas referenced : 
map_wf, 
iMonomial_wf, 
minus-monomial_wf, 
int_seg_wf, 
length_wf, 
all_wf, 
imonomial-less_wf, 
select_wf, 
sq_stable__le, 
less_than_transitivity2, 
le_weakening2, 
iPolynomial_wf, 
subtype_rel_list, 
top_wf, 
non_neg_length, 
map_length, 
length_wf_nat, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
equal_wf, 
lelt_wf, 
subtract_wf, 
minus-one-mul, 
add-swap, 
add-commutes, 
add-associates, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
zero-add, 
one-mul, 
subtype_base_sq, 
map-length, 
and_wf, 
less_than_wf, 
select-map, 
int_seg_properties, 
nat_properties, 
int_nzero_properties, 
not_wf, 
equal-wf-base, 
sorted_wf, 
subtype_rel_self, 
list_subtype_base, 
list_wf, 
assert_wf, 
intlex_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
extract_by_obid, 
isectElimination, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
lambdaFormation, 
natural_numberEquality, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
independent_pairFormation, 
dependent_pairFormation, 
sqequalIntensionalEquality, 
intEquality, 
promote_hyp, 
addEquality, 
multiplyEquality, 
instantiate, 
cumulativity, 
addLevel, 
hyp_replacement, 
applyLambdaEquality, 
levelHypothesis, 
productEquality
Latex:
\mforall{}[p:iPolynomial()].  (minus-poly(p)  \mmember{}  iPolynomial())
Date html generated:
2017_04_14-AM-08_58_40
Last ObjectModification:
2017_02_27-PM-03_41_19
Theory : omega
Home
Index