Nuprl Lemma : lelt_wf
∀[x,y,z:ℤ].  (x ≤ y < z ∈ ℙ)
Proof
Definitions occuring in Statement : 
lelt: i ≤ j < k
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lelt: i ≤ j < k
Lemmas referenced : 
and_wf, 
le_wf, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[x,y,z:\mBbbZ{}].    (x  \mleq{}  y  <  z  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-04_01_51
Last ObjectModification:
2015_12_26-AM-10_56_54
Theory : int_1
Home
Index