Nuprl Lemma : lelt_wf

[x,y,z:ℤ].  (x ≤ y < z ∈ ℙ)


Proof




Definitions occuring in Statement :  lelt: i ≤ j < k uall: [x:A]. B[x] prop: member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lelt: i ≤ j < k
Lemmas referenced :  and_wf le_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry intEquality isect_memberEquality because_Cache

Latex:
\mforall{}[x,y,z:\mBbbZ{}].    (x  \mleq{}  y  <  z  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-04_01_51
Last ObjectModification: 2015_12_26-AM-10_56_54

Theory : int_1


Home Index