Nuprl Lemma : int_nzero_properties
∀[i:ℤ-o]. i ≠ 0
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
nequal: a ≠ b ∈ T 
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
int_nzero: ℤ-o
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
equal-wf-base, 
int_subtype_base, 
equal-wf-T-base, 
int_nzero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
setElimination, 
rename, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
intEquality, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
baseClosed, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache
Latex:
\mforall{}[i:\mBbbZ{}\msupminus{}\msupzero{}].  i  \mneq{}  0
Date html generated:
2017_04_14-AM-07_16_39
Last ObjectModification:
2017_02_27-PM-02_51_32
Theory : arithmetic
Home
Index