Nuprl Lemma : int_nzero_properties

[i:ℤ-o]. i ≠ 0


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] nequal: a ≠ b ∈  natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nequal: a ≠ b ∈  not: ¬A implies:  Q false: False int_nzero: -o prop: subtype_rel: A ⊆B
Lemmas referenced :  equal-wf-base int_subtype_base equal-wf-T-base int_nzero_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution setElimination rename hypothesis independent_functionElimination voidElimination extract_by_obid isectElimination intEquality hypothesisEquality applyEquality sqequalRule baseClosed lambdaEquality dependent_functionElimination because_Cache

Latex:
\mforall{}[i:\mBbbZ{}\msupminus{}\msupzero{}].  i  \mneq{}  0



Date html generated: 2017_04_14-AM-07_16_39
Last ObjectModification: 2017_02_27-PM-02_51_32

Theory : arithmetic


Home Index