Nuprl Lemma : length_wf_nat

[A:Type]. ∀[L:A List].  (||L|| ∈ ℕ)


Proof




Definitions occuring in Statement :  length: ||as|| list: List nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: ge: i ≥  prop:
Lemmas referenced :  length_wf non_neg_length le_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].    (||L||  \mmember{}  \mBbbN{})



Date html generated: 2016_05_14-AM-06_33_04
Last ObjectModification: 2015_12_26-PM-00_37_52

Theory : list_0


Home Index