Nuprl Lemma : length_wf_nat
∀[A:Type]. ∀[L:A List].  (||L|| ∈ ℕ)
Proof
Definitions occuring in Statement : 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
ge: i ≥ j 
, 
prop: ℙ
Lemmas referenced : 
length_wf, 
non_neg_length, 
le_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].    (||L||  \mmember{}  \mBbbN{})
Date html generated:
2016_05_14-AM-06_33_04
Last ObjectModification:
2015_12_26-PM-00_37_52
Theory : list_0
Home
Index