Nuprl Lemma : int_seg_properties
∀[i,j:ℤ]. ∀[y:{i..j-}].  i ≤ y < j
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
squash: ↓T
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
Lemmas referenced : 
int_seg_wf, 
less_than'_wf, 
squash_wf, 
member-less_than, 
sq_stable__less_than, 
sq_stable__le, 
less_than_wf, 
le_wf, 
sq_stable__and
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
isect_memberEquality, 
independent_functionElimination, 
lambdaFormation, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
voidElimination
Latex:
\mforall{}[i,j:\mBbbZ{}].  \mforall{}[y:\{i..j\msupminus{}\}].    i  \mleq{}  y  <  j
Date html generated:
2016_05_13-PM-04_02_04
Last ObjectModification:
2016_01_14-PM-07_24_36
Theory : int_1
Home
Index