Nuprl Lemma : minus-monomial_wf

[m:iMonomial()]. (minus-monomial(m) ∈ iMonomial())


Proof




Definitions occuring in Statement :  minus-monomial: minus-monomial(m) iMonomial: iMonomial() uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  iMonomial: iMonomial() uall: [x:A]. B[x] member: t ∈ T minus-monomial: minus-monomial(m) int_nzero: -o nequal: a ≠ b ∈  prop: uimplies: supposing a subtype_rel: A ⊆B not: ¬A implies:  Q subtract: m true: True sq_type: SQType(T) all: x:A. B[x] guard: {T} false: False uiff: uiff(P;Q) and: P ∧ Q
Lemmas referenced :  nequal_wf int_nzero_wf list_wf sorted_wf istype-int subtract_wf minus-zero minus-one-mul zero-add add-zero trivial-cancel subtype_base_sq int_subtype_base int_nzero_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule productElimination thin independent_pairEquality Error :dependent_set_memberEquality_alt,  minusEquality sqequalHypSubstitution setElimination rename hypothesisEquality hypothesis Error :universeIsType,  extract_by_obid isectElimination intEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry Error :productIsType,  Error :setIsType,  independent_isectElimination Error :lambdaEquality_alt,  Error :lambdaFormation_alt,  addEquality multiplyEquality because_Cache instantiate cumulativity dependent_functionElimination independent_functionElimination voidElimination Error :equalityIstype,  Error :inhabitedIsType

Latex:
\mforall{}[m:iMonomial()].  (minus-monomial(m)  \mmember{}  iMonomial())



Date html generated: 2019_06_20-PM-00_45_38
Last ObjectModification: 2018_12_07-AM-10_21_14

Theory : omega


Home Index