Nuprl Lemma : minus-monomial_wf
∀[m:iMonomial()]. (minus-monomial(m) ∈ iMonomial())
Proof
Definitions occuring in Statement : 
minus-monomial: minus-monomial(m)
, 
iMonomial: iMonomial()
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
iMonomial: iMonomial()
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
minus-monomial: minus-monomial(m)
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
prop: ℙ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
subtract: n - m
, 
true: True
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
false: False
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
Lemmas referenced : 
nequal_wf, 
int_nzero_wf, 
list_wf, 
sorted_wf, 
istype-int, 
subtract_wf, 
minus-zero, 
minus-one-mul, 
zero-add, 
add-zero, 
trivial-cancel, 
subtype_base_sq, 
int_subtype_base, 
int_nzero_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
productElimination, 
thin, 
independent_pairEquality, 
Error :dependent_set_memberEquality_alt, 
minusEquality, 
sqequalHypSubstitution, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
intEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :productIsType, 
Error :setIsType, 
independent_isectElimination, 
Error :lambdaEquality_alt, 
Error :lambdaFormation_alt, 
addEquality, 
multiplyEquality, 
because_Cache, 
instantiate, 
cumulativity, 
dependent_functionElimination, 
independent_functionElimination, 
voidElimination, 
Error :equalityIstype, 
Error :inhabitedIsType
Latex:
\mforall{}[m:iMonomial()].  (minus-monomial(m)  \mmember{}  iMonomial())
Date html generated:
2019_06_20-PM-00_45_38
Last ObjectModification:
2018_12_07-AM-10_21_14
Theory : omega
Home
Index