Nuprl Lemma : trivial-cancel

[g:ℤ-o]. ∀[v:ℤ].  uiff((g v) 0 ∈ ℤ;v 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  int_nzero: -o uiff: uiff(P;Q) uall: [x:A]. B[x] multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  subtype_rel: A ⊆B int_nzero: -o prop: uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x] false: False implies:  Q not: ¬A nequal: a ≠ b ∈  squash: T true: True guard: {T} iff: ⇐⇒ Q top: Top all: x:A. B[x] sq_type: SQType(T)
Lemmas referenced :  int_nzero_wf int_subtype_base equal-wf-base equal-wf-T-base equal_wf zero-div-rem squash_wf true_wf divide-exact subtype_rel_self iff_weakening_equal zero-mul mul-commutes subtype_base_sq
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality isect_memberEquality independent_pairEquality productElimination sqequalRule applyEquality because_Cache baseClosed hypothesisEquality rename setElimination multiplyEquality intEquality thin isectElimination sqequalHypSubstitution extract_by_obid hypothesis independent_pairFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution natural_numberEquality voidElimination independent_functionElimination lambdaFormation divideEquality applyLambdaEquality Error :lambdaEquality_alt,  imageElimination Error :universeIsType,  Error :inhabitedIsType,  universeEquality imageMemberEquality instantiate independent_isectElimination voidEquality lambdaEquality dependent_functionElimination cumulativity

Latex:
\mforall{}[g:\mBbbZ{}\msupminus{}\msupzero{}].  \mforall{}[v:\mBbbZ{}].    uiff((g  *  v)  =  0;v  =  0)



Date html generated: 2019_06_20-AM-11_26_10
Last ObjectModification: 2018_10_15-PM-04_51_54

Theory : arithmetic


Home Index